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Spectral distribution of drums with fractal perimeters: The Weyl-Berry-Lapidus conjecture
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The Weyl-Berry-Lapidus conjecture on vibrational spectra of drums with fractal perimeters (fractal drums)
is examined in terms of large-scale numerical simulations. The integrated densities of states of fractal drums
with the perimeter of the Koch curve are computed by employing a powerful numerical method. It is confirmed
that the Weyl-Berry-Lapidus conjecture holds in the frequency regime higher than a crossover frequency w,
related to the length scale characterizing the fractal boundary.
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Many objects in nature possess irregular and fractal ge-
ometries [1,2]. Dynamical properties of such structures have
attracted much attention in recent years [3]. Among these,
drums with fractal perimeters, so called fractal drums, pro-
vide various physical implications, e.g., scattering of waves
by fractal surfaces, water waves in lakes (seiches), and os-
cillations of the earth [4]. The asymptotic properties of the
integrated density of states (IDOS) of fractal drums in the
high-frequency regime have been discussed from a math-
ematical point of view [5,6]. Lapidus [6] has conjectured that
the IDOS, I4,(w), of fractal drums with fixed boundary con-
ditions should have the following frequency dependence in
the high-frequency limit:

S
I (w)= ypm w*—B w7, (1)

where Dy is the fractal dimension of the perimeter, S is the
area of the drum, and By is a positive constant depending on
a shape of the drum. This expression is called the Weyl-
Berry-Lapidus (WBL) conjecture. The first term of Eq. (1) is
the IDOS of fractal drums with free boundary in the high-
frequency limit. The second term is a correction due to the
vanishing degree of freedom by imposing fixed boundary
conditions at a fractal perimeter. The degree of freedom is
estimated by assuming a linear dispersion relation for bound-
ary modes excited in the fractal drum with free boundary
conditions.

The WBL conjecture has been numerically studied by Sa-
poval et al. [7,8] via the calculation of the IDOS of fractal
drums with the Koch-curve perimeter (Koch drum) with the
fractal dimension D;=1.5. They have used a mapping rela-
tion between the Helmholtz equation and the diffusion equa-
tion for computing the IDOS, and calculated the eigenfunc-
tions and the eigenfrequencies from diffusion processes. The
frequencies in their calculation, however, are not high
enough. In addition, the generation of the Koch drum reflect-
ing the fractality of the boundary was not sufficient.

The purpose of the present paper is to discuss the validity
of the WBL conjecture on the spectral distribution of fractal
drums via large-scale simulations. We confirm, by employing
the Koch drum in higher generation and a powerful numeri-
cal method to treat very large systems, that the WBL conjec-
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ture is valid in the higher-frequency regime than a crossover
frequency w, related to the length scale characterizing the
fractal boundary.

The WBL conjecture assumes that a drum is a continuum
medium. We transform the Helmholtz equation for the con-
tinuum drum into discretized equations of motion with a grid
spacing a using the central difference approximation. We
replace the first term of Eq. (1) by the IDOS of a drum with
free boundary, and regard the following relation as the dis-
cretized version of the WBL conjecture,

Iﬁx(w):Ifree(w)_Bwaf' (2)

The validity of this relation has been checked by calculating
the IDOS of a square drum. The result is in fairly good
agreement with Eq. (2), leading to D ;= 1. In order to confirm
the validity of Eq. (2) for fractal drums, we introduce the
difference C(w) between I ..(w) and 7 ,(w),

Clw)=Ige(w) 1 (o). 3)

The Koch drums we treat are illustrated in Fig. 1. The
vibrating area is taken to be constant on various generations
of the Koch drum, but the lengths of perimeters increase with
increasing generation. We examine, at first, the Koch drum in
the third-generation (v=3), which seems to reflect suffi-
ciently the fractality of the boundary shape. The length of the
segment / [see Fig. 1(c)] at the boundary must be taken much
larger than the grid spacing a. Here the value of a is chosen
to be /=29a. Therefore, the system size L at v=3 becomes
L=3074a, and the number of grid points is
N =3 474 433, excluding the number of perimeter sites be-
cause of the fixed boundary condition. The number of sites
on perimeter is N,=59 392.

Our fractal drum consists of the grid points of N, sites
with mass m (=1) and linear springs, with force constant
K;;, connecting nearest-neighbor sites. The equations for
elastic vibrations are expressed by

mt%:; Ky, (4)

where ¢; is the displacement of the ith site. The spring con-
stant for the nearest-neighbor interaction is taken to be
K;j=1. We apply the forced oscillator method (FOM) for the
calculation of the IDOS [9-11]. This method enables us to

R1310 © 1995 The American Physical Society



52 SPECTRAL DISTRIBUTION OF DRUMS WITH FRACTAL ...

b)v=1
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FIG. 1. Illustrations of the Koch drums in various generations.
(a) The initiator of the Koch drum. (b) The Koch drum in the first
generation, v=1. (c) The Koch drum in v=3. The dotted lines
shown in (b) and (c) indicate the initiator. The fractal dimension of
the Koch drum is D ;=1n8/In4=1.5. Note that the segment [ is the
length scale characterizing the fractal boundary.

calculate quite accurately the densities of states (DOS) of
very large systems. In this numerical technique, the DOS,
D(w), of fractal drums are obtained from the averaged total
energy of the system (E(¢#,®)) under applying the periodic
external force F;=Fjcosgcos{)t, where F is a constant,
¢; is random quality on the ith site, and () is a frequency of
the external force. The average ( ) is taken over a number
of sets {¢;}. The DOS is related to the total energy
(E(t,)) through the relation

8(E(t,w))

D(w)= 'n'tF(z)Ns

(&)

The IDOS, I4,(w), is obtained by integrating D(w). We can
obtain the IDOS of the Koch drum with a great number of
grid points without calculating the eigenfrequencies. The ad-
vantages of the FOM lie also on being easily vectorized and
parallelized for implementation on an array-processing mod-
ern supercomputer. This is due to the fact that the time-
consuming part in computations is to solve the equation of
motion and the program is easily optimized.

Figure 2 shows our numerical results on the frequency
dependence of the calculated IDOS. Open circles and crosses
denote the IDOS when taking free and fixed boundary con-
ditions, respectively. Filled circles are the correction term
C(w) obtained using Eq. (3). The result clearly shows that
the correction term C(w) is proportional to w?s with
D;=1.5 in the higher-frequency regime than a crossover fre-
quency w. which indicates the applicability of the WBL con-
jecture.
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FIG. 2. The IDOS, Ig..(w) and I (w), for the Koch drum at
v=3 as a function of frequency. Open circles and crosses indicate
the IDOS for drums with free and fixed boundary conditions, re-
spectively. Filled circles indicate the correction term C(w) which
are proportional to w!>(= wP/) in the higher frequency regime than
a crossover frequency w.. In the lower frequency regime than
w,, C(w) does not follow the power law dependence wP.

The physical interpretation of w, can be given by com-
paring the wavelength N\ of vibrational excitations and the
length of the segment / at the boundary as follows: The WBL
conjecture is valid in the high-frequency limit or short wave-
length limit (A—0). We assume that vibrations of fractal
drums with free boundary can be separated into the inside
and the boundary part for the case A//<<1. Provided that
N/l is larger than unity, vibrational excitations are strongly
scattered at the fractal boundary, and one cannot separate the
modes into the inside and the boundary parts or, even if
possible, the assumption of the linear dispersion relation of
the boundary modes is not appropriate. This implies that the
WBL conjecture fails even in the very high-frequency region
if the conditions A//>1 holds. We claim that the crossover
frequency w,. is related to the excitation mode with the
wavelength A~2/ (see Fig. 3).

1

A=21

FIG. 3. A schematic illustration for the crossover frequency
w, corresponding to the wavelength A =21.
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Let us estimate the value of the crossover frequency w,
for our Koch drum. Since /=29a, w. should become 0.153
by using the linear dispersion relation w=2m/\VK/m for
the boundary modes in the drum with free boundary condi-
tions, where we use the system of unit m =K =1. This value
agrees with a crossover frequency w, obtained in Fig. 2. We
see that the WBL conjecture is valid when the wavelength
N\ of vibrational excitations of fractal drums is shorter than
the length scale !/ characterizing the fractal boundary.

In the low-frequency regime w<<w, (or A>1/), the WBL
conjecture does not hold due to the following possibilities:
(a) The separation of modes into the inside and the boundary
part is not acceptable, and (b) the dispersion becomes
anomalous (see Ref. [3]) due to fractality, namely, the as-
sumption of the linear dispersion is not appropriate. In case
(a), the correction term C(w) for the region w<€w, would
not show the power law dependence for frequency. For case
(b), the correction term C(w) should be proportional to
w®, where the exponent « takes a different value from the
fractal dimension D of the perimeter.

In order to clarify this point, we have computed the
IDOS of the Koch drum in the fifth generation (v=5). The
length of the fractal segment / is taken to be 2a, so that
the system size at v=5 is L=3412a, and the degree of
freedom is N,=4 325377 (excluding the perimeter sites:
N,=262 144). The calculated results are shown in Fig. 4 as
a function of frequency w. The symbols in Fig. 4 are the
same with those given in Fig. 2. A crossover frequency w,
becomes 2 assuming a linear dispersion. Note that, due to
rather high crossover frequency w,.~2, the frequency region
calculated in Fig. 4 almost covers the condition A >/. We see
that the correction term C(w) does not follow the power law
dependence, indicating that relevant modes are inseparable.
We are planning to compute the IDOS of drums with differ-
ent shapes in order to confirm our results. The preliminary
results support our conclusions reported in this paper.

In summary, we have computed the IDOS of fractal

drums with the Koch-curve (D= 1.5) perimeters in genera-
tions »=3 and 5. The WBL conjecture has been confirmed
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FIG. 4. The IDOS, () and I (w), for the Koch drum at
v=>5 as a function of frequency w. The symbols are the same with
those in Fig. 2. The crossover frequency w, becomes 2. The cor-
rection term C(w) does not follow the power law dependence be-
low w ~2.

numerically. The results show that (i) the criterion on the
validity of the WBL conjecture has become clear, namely the
conjecture holds when the wavelength N of vibrational exci-
tations are shorter than the length scale / characterizing the
fractality of the perimeter, and it fails when the wavelength
N\ becomes longer than the length scale /, and (ii) the WBL
conjecture is applicable not only under the high-frequency
limit but also under the condition \//—0.
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